Polars.Sql_contextval create : (string * Lazy_frame.t) list -> tval get_tables : t -> string listval register : t -> name:string -> Lazy_frame.t -> unitval execute_with_data_frames :
names_and_data_frames:(string * Data_frame.t) list ->
query:string ->
(Data_frame.t, string) Core.resultval execute_with_data_frames_exn :
names_and_data_frames:(string * Data_frame.t) list ->
query:string ->
Data_frame.tval vstack_and_collect :
names_and_data_frames:(string * Data_frame.t list) list ->
query:string ->
(Data_frame.t, string) Core.resultExecute a query over names_and_data_frames. Unlike execute_with_data_frames, each data source is a list of data frames that can be concatenated together to produce the final result.
As an example, vstack_and_collect ~names_and_data_frames:["data1", [df1; df2; df3]] roughly translates to
let df = vstack [ df1; df2; df3 ] in
execute_with_data_frames ~names_and_data_frames:[ "data1", df ]val vstack_and_execute :
names_and_data_frames:(string * Data_frame.t list) list ->
query:string ->
(Lazy_frame.t, string) Core.resultLike vstack_and_collect except it returns the query plan that would be executed instead of actually computing the result
val unregister : t -> name:string -> unitval execute : t -> query:string -> (Lazy_frame.t, string) Core.resultval execute_exn : t -> query:string -> Lazy_frame.t